Hydration dynamics at fluorinated protein surfaces.
نویسندگان
چکیده
Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface.
منابع مشابه
Ab initio molecular dynamics simulations of aqueous triflic acid confined in carbon nanotubes.
Ab initio molecular dynamics simulations were performed to investigate the effects of nanoscale confinement on the structural and dynamical properties of aqueous triflic acid (CF3SO3H). Single-walled carbon nanotubes (CNTs) with diameters ranging from ∼11 to 14 Å were used as confinement vessels, and the inner surface of the CNT were either left bare or fluorinated to probe the influence of the...
متن کاملProtein surface hydration mapped by site-specific mutations.
Water motion at protein surfaces is fundamental to protein structure, stability, dynamics, and function. By using intrinsic tryptophans as local optical probes, and with femtosecond resolution, it is possible to probe surface-water motions in the hydration layer. Here, we report our studies of local hydration dynamics at the surface of the enzyme Staphylococcus nuclease using site-specific muta...
متن کاملFluidity of hydration layers nanoconfined between mica surfaces.
We perform molecular dynamics simulations to investigate the shear dynamics of hydration water nanoconfined between two mica surfaces at 1 bar pressure and 298 K. Newtonian plateaus of shear viscosity comparable to the bulk value for different hydration layers D=0.92-2.44 nm are obtained. The origin of this persistent fluidity of the confined aqueous system is found to be closely associated wit...
متن کاملOrigin of 1/f noise in hydration dynamics on lipid membrane surfaces
Water molecules on lipid membrane surfaces are known to contribute to membrane stability by connecting lipid molecules and acting as a water bridge. Although water structures and diffusivities near the membrane surfaces have been extensively studied, hydration dynamics on the surfaces has remained an open question. Here we investigate residence time statistics of water molecules on the surface ...
متن کاملFemtosecond conical intersection dynamics of tryptophan in proteins and validation of slowdown of hydration layer dynamics.
Water motion probed by intrinsic tryptophan shows the significant slowdown around protein surfaces, but it is unknown how the ultrafast internal conversion of two nearly degenerate states of Trp ((1)L(a) and (1)L(b)) affects the initial hydration in proteins. Here, we used a mini-protein with 10 different tryptophan locations one at a time through site-directed mutagenesis and extensively chara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 40 شماره
صفحات -
تاریخ انتشار 2010